逻辑回归(逻辑回归和支持向量机的区别)

http://qsimil.agens-online.de/ 军事国防 2026-02-06 13:39:31 19554

摘要:今天给各位分享逻辑回归的知识,其中也会对逻辑回归和支持向量机的区别进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!逻辑回归有哪些模型1.二项式逻辑回归:因变量是有两种结果的二元变

今天给各位分享逻辑回归的逻辑逻辑量机知识,其中也会对逻辑回归和支持向量机的回归回归和支区别进行解释,如果能碰巧解决你现在面临的逻辑逻辑量机问题,别忘了关注本站,回归回归和支现在开始吧!逻辑逻辑量机

逻辑回归有哪些模型

1.二项式逻辑回归:

因变量是回归回归和支有两种结果的二元变量,比如赢=1,逻辑逻辑量机输= 0;

自变量可以是回归回归和支分类变量,也可以是逻辑逻辑量机连续变量;要求正样本数N至少是自变量数的10倍。

2.无序多分类逻辑回归;

因变量为无序多类变量,回归回归和支如健康知识获取途径(传统大众媒体=1,逻辑逻辑量机网络=2,回归回归和支社区宣传= 3);自变量可以是逻辑逻辑量机分类变量,也可以是回归回归和支连续变量;也可用于因变量为有序多分类变量,但不满足平行检验条件的逻辑逻辑量机数据。

原理:模型方程是由因变量各水平(除参考水平外)与参考水平之比的自然对数建立的。

3.有序多分类逻辑回归:

因变量是有序的多类别变量,如疾病严重程度(轻度=1,中度=2,重度= 3);自变量可以是分类变量,也可以是连续变量。

原理:将多类因变量依次划分为多元二元Logistic回归;

要求平行线检验,即自变量系数是否相等;如果没有,则使用没有多分类的逻辑回归。

逻辑回归原理

逻辑回归原理基本概念

1. 什么是逻辑回归

逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别)

回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率

2. 逻辑回归的优缺点

优点:

1)速度快,适合二分类问题

2)简单易于理解,直接看到各个特征的权重

3)能容易地更新模型吸收新的数据

缺点:

对数据和场景的适应能力有局限性,不如决策树算法适应性那么强

3. 逻辑回归和多重线性回归的区别

Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalizedlinear model)。

这一家族中的模型形式基本上都差不多,不同的就是因变量不同。这一家族中的模型形式基本上都差不多,不同的就是因变量不同。

如果是连续的,就是多重线性回归

如果是二项分布,就是Logistic回归

如果是Poisson分布,就是Poisson回归

如果是负二项分布,就是负二项回归

4. 逻辑回归用途

寻找危险因素:寻找某一疾病的危险因素等;

预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;

判别:实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。

5. Regression 常规步骤

寻找h函数(即预测函数)

构造J函数(损失函数)

想办法使得J函数最小并求得回归参数(θ)

6. 构造预测函数h(x)

1) Logistic函数(或称为Sigmoid函数),函数形式为:

对于线性边界的情况,边界形式如下:

其中,训练数据为向量

最佳参数

构造预测函数为:

函数h(x)的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

P(y=1│x;θ)=h_θ (x)

P(y=0│x;θ)=1-h_θ (x)

7.构造损失函数J(m个样本,每个样本具有n个特征)

Cost函数和J函数如下,它们是基于最大似然估计推导得到的。

8. 损失函数详细推导过程

1) 求代价函数

概率综合起来写成:

取似然函数为:

对数似然函数为:

最大似然估计就是求使l(θ)取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。

在Andrew Ng的课程中将J(θ)取为下式,即:

2) 梯度下降法求解最小值

θ更新过程可以写成:

9. 向量化

ectorization是使用矩阵计算来代替for循环,以简化计算过程,提高效率。

向量化过程:

约定训练数据的矩阵形式如下,x的每一行为一条训练样本,而每一列为不同的特称取值:

g(A)的参数A为一列向量,所以实现g函数时要支持列向量作为参数,并返回列向量。

θ更新过程可以改为:

综上所述,Vectorization后θ更新的步骤如下:

求 A=x*θ

求 E=g(A)-y

求

10.正则化

(1) 过拟合问题

过拟合即是过分拟合了训练数据,使得模型的复杂度提高,繁华能力较差(对未知数据的预测能力)

下面左图即为欠拟合,中图为合适的拟合,右图为过拟合。

(2)过拟合主要原因

过拟合问题往往源自过多的特征

解决方法

1)减少特征数量(减少特征会失去一些信息,即使特征选的很好)

• 可用人工选择要保留的特征;

• 模型选择算法;

2)正则化(特征较多时比较有效)

• 保留所有特征,但减少θ的大小

(3)正则化方法

正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项或惩罚项。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化项就越大。

正则项可以取不同的形式,在回归问题中取平方损失,就是参数的L2范数,也可以取L1范数。取平方损失时,模型的损失函数变为:

lambda是正则项系数:

• 如果它的值很大,说明对模型的复杂度惩罚大,对拟合数据的损失惩罚小,这样它就不会过分拟合数据,在训练数据上的偏差较大,在未知数据上的方差较小,但是可能出现欠拟合的现象;

• 如果它的值很小,说明比较注重对训练数据的拟合,在训练数据上的偏差会小,但是可能会导致过拟合。

逻辑回归解决的是什么问题

逻辑回归原理的基本概念

1.什么是逻辑回归?

Logistic回归是这样一个过程:面对一个回归或分类问题,建立代价函数,然后通过最优化方法迭代求解最优的模型参数,然后对我们求解的模型的质量进行检验和验证。

Logistic回归其实是一种分类方法,虽然名字叫“回归”。主要用于两个分类问题(即只有两个输出,分别代表两个类别)。

在回归模型中,Y是一个定性变量,如y=0或1。logistic方法主要用于研究某些事件发生的概率。

2.逻辑回归的优点和缺点

优势:

1)速度快,适用于二分类问题。

2)简单易懂,直接看到每个特征的权重

3)模型可以容易地更新以吸收新数据。

缺点:

对数据和场景的适应性有限,不如决策树算法强。

3.逻辑回归和多元线性回归的区别

逻辑回归和多元线性回归其实有很多共同点。最大的区别是它们的因变量不同,而其他的基本相同。因此,这两个回归可以属于同一个家族,即广义线性模型。

这个家族中的模型除了因变量不同之外,在形式上基本相似。这个家族中的模型除了因变量不同之外,在形式上基本相似。

如果是连续的,就是多元线性回归。

如果是二项分布,就是Logistic回归。

如果是泊松分布,就是泊松回归。

如果是负二项分布,就是负二项回归。

4.逻辑回归的使用

寻找危险因素:寻找某种疾病的危险因素等。;

预测:根据模型,预测不同自变量下某种疾病或情况发生的概率;

辨别:其实和预测差不多。也是基于模型来判断某人属于某种疾病或情况的概率,也就是看这个人属于某种疾病的可能性有多大。

5.回归的一般步骤

寻找H函数(即预测函数)

j函数(损失函数)

尝试最小化J函数,得到回归参数(θ)。

6.构造预测函数h(x)

1)逻辑函数(或Sigmoid函数),其函数形式为:

_

_

对于线性边界的情况,边界形式如下:

_

训练数据是一个向量。

_

最佳参数

_

预测函数是:

_

函数h(x)的值具有特殊的含义,它表示结果为1的概率。因此,对于输入x,将结果分类到类别1和类别0的概率是:

p(y = 1│x;θ)=h_θ (x)

p(y = 0│x;θ)=1-h_θ (x)

7.构造损失函数J(m个样本,每个样本具有N个特征)

代价函数和J函数如下,基于极大似然估计导出。

_

8.损失函数的详细推导过程

1)找到成本函数

概率被组合并写成:

_

回答于 2022-09-06

逻辑回归的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于逻辑回归和支持向量机的区别、逻辑回归的信息别忘了在本站进行查找喔。

http://qsimil.agens-online.de/
相关推荐

评论列表
友情链接
关闭

用微信“扫一扫”